A MODEL SHELL AND TUBE HEAT EXCHANGER. THE DESIGN AND CONSTRUCTION
ABSTRACT
The aim of this project was to construct shell and tube heat exchanger with fixed boundless. A heat exchanger that would cool 5 x 5 x 10 – 3 kg/s of steam at a calculated heat load of 152 – 395/S was fabricated. The steam is to reach the heat exchanger from a distillation column at a temperature of 300k. The specification of the layout as well as the detailed mechanical design were assumed and also calculated. It is established that a horizontal heat exchanger with cold water at the shall side and the treated steam at the tube side is adequate for this operation, with the aim of cooling the steam from the distillation column. The available area obtained from calculation is 1.0m2 and also the overall heat transfer coefficient obtained is 4.10W/M2k. it is also seen that the heat exchanger is satisfactory and consists of five copper tubes of inside diameter 90mm and 5920mm length. The shell inside diameter 810mm and 5.770mm length. The tube and shell heat exchanger has a total length of 5820mm. The material of construction for the shell side is stainless steel while copper tubes were used for the tubes inside. The total cost of the heat exchanger was N12,000.
CHAPTER ONE
1.0 INTRODUCTION
1.1 BACKGROUND OF THE STUDY
The title of this project is construction of a model shell and tube heat exchanger.
Heat exchanger is a device in which heat is transferred from one fluid stream to another normally by the combined process of conduction and convection. Heat exchangers are the most important item in many thermal systems (Abalu 2006).
According to Jaeger 1995, heat exchangers are devices used to transfer heat. On the basis of numerous application in the industry for which they are designed and manufactured, heat exchangers are often given various names such as boilers, steam generator, automobile radiators, evaporators, condensers, heaters, coolers generators etc.
It is used to transfer heat from one fluid steam to another. it is also used to predict the amount of energy required to change a system from one equilibrium state to another (Abalu 2006).
There are various types of heat exchanger equipment generally defined by the function it performs in a chemical industry, they are; regenerator, open-type heat exchanger and closed-type heat exchanger or recuperated (Dickinson 1970).
Since our major concern is construction of model shell and tube heat exchanger, which is a type of recuperates or closed-type heat exchanger.
Model shell and tube heat exchangers constitute the bulk of unfired heat transfer equipment used in chemical process plants. They are found in different forms as fixed – tube-sheet heat exchanger, u-tube heat exchanger, floating heat exchanger, and internal floating heat exchanger. They can be inform of; double-pipe heat exchangers. Plate-type heat exchangers, air-cooled heat exchangers and graphite block heat exchangers (Harriot 1985).
FIGURE. 1.1 SHELL AND TUBE HEAT EXCHANGER
1.2 STATEMENT OF THE PROBLEM
There are some problems associated with the study of heat exchanger:
Time: Due to lectures and other school activities like practical’s and assignments we do not normally have enough time to visit the library and cyber café for the study of modern shell and tube heat exchanger.
Browsing problem: When browsing, sometimes there is network problem in the sense that the result will not come out easily, sometimes it will not be easy to fishout the main thought in the outcome.
Cost: There is high cost of construction of a modern shell and tube heat exchanger and browsing for the study.
The study is being carried out in order to:
i. Make appropriate thermal control in the chemical industries since the most important aim in the chemical engineering sector of any plant is to control the flow of thermal energy between two thermal.
ii. Enable us to predict the amount of energy required to change a system from one equilibrium state to another
iii. Examine some of the techniques through which heat is transferred from one fluid stream to another.
iv. Know the rate at which the exchange of heat take place.
1.5 METHODS OF RESEARCH
Since the major concern is the construction of model shell and tube heat exchanger, the research method used was mainly constructional method of model shell and tube heat exchanger.
1.6 SIGNIFICANT OF THE STUDY
The future developments in the aerospace industries will hinge mainly upon the case with which structures and engines can be cooled; modern electrical and electronic plants require efficient dissipation of losses converted to thermal energy; the design of chemical engineering plant is usually governed by heat transfer and the analogues mass transfer processes and even civil engineers must take account of thermal effects in buildings and structures.
Process fluids from a chemical reactor are brought to reasonable temperature by transferring heat from this fluid (Kern 1950). Heat exchange or transfers is a major principle of industrial operation.
